skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Althaus, Ellen Wang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This research paper investigates how classroom observation tools can be effectively combined to promote engagement in STEM education. Specifically, it explores the integration of the Classroom Observation Protocol for Undergraduate STEM (COPUS) and a culturally responsive Classroom Observation Instrument (COI) to evaluate and improve teaching practices. COPUS, developed by Smith et al. [21], captures instructional dynamics and student-faculty interactions, while the Classroom Observation Instrument COI, created by Dr. Jennifer G. Cromley and the University of Illinois Urbana-Champaign (UIUC) Developing Equity-Minded Engineering Practitioners (DEEP) research team [6], focuses on observing and assessing culturally responsive-related instructional practices. At Morgan State University (MSU), a Historically Black University (HBCU), coders formally trained by the UIUC DEEP team used both tools to analyze classroom recordings of faculty who had undergone professional development in engaging pedagogy. Findings indicate measurable improvements and balanced engagement in the classroom. This fusion of COPUS and COI tools offers a replicable framework for enhancing inclusive STEM instruction and cultivating more equitable learning environments. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Reflection is often cited as a critical component of effective teaching, but the term itself and its related practices often remain ambiguous. Reflecting on one's teaching is an important exercise to better understand the approaches to and success towards creating inclusive classrooms. Therefore, engineering educators must become aware of reflective practices to be able to employ them in their work. We explored essential elements of highly effective reflection practices for equity-minded educators in a workshop where faculty participants learned about three reflective practices: (i) personal reflection, (ii) reflective engagement with colleagues, and (iii) reflection with students. Through collaboration with others, attendees evaluated various reflection techniques, discussed case studies, and considered supports and barriers to how purposeful reflection can support equity-minded engineering practitioners. From this workshop, a Community of Practice of faculty was formed to analyze individual reflective practices, identify practices applicable to their classrooms, and work together to employ reflection in seven classrooms across our college. In this practice paper, we evaluate each of the above reflective practices and their utility in contextualizing more equitable curricula in a variety of course types. Additionally, we provide an engineering education framework for using reflection to understand the classroom environment educators create and its impact on equitable student learning. This practice paper presents reflections from the workshop and outcomes from the Community of Practice activities to inform equity-minded reflective instruction in engineering. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026